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ABSTRACT 

The use of complex self tuning Proportional, Integral and Derivative 

(PID) controller, to drive the speed and direction in mini robot, is limited 

by calculus power and by the precision and noise of the on board input 

sensors, particularly severe problems arise in computing the derivative 

term. In this work a PID whose terms are computed from filtered input 

with a simple recursive Exponentially Weighted Moving Average (EWMA) 

is used. In order to solve the tradeoff between speed and noise rejection, 

parameters of the filter are dynamically adjusted using statistical criteria. 

Due to its low resource requirements and the simplicity of implementation 

the presented algorithm is well suited for use in mini robots.  
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1. INTRODUCTION 

The PID control is the most popular control system; it is versatile and 

can be tuned adjusting three constants. PID is a well proved and success-

fully applied in many control systems (Wescott, 2000).  



In a digital controller, its discrete form is used, (Kuchen, et al. 1988). 

y[n]= Kp . e[n] + Ki . i[n] + Kd  d[n],                          (1) 

Were:  

d[n] = (e[n] - e[n-1])/Ts,                                    (2) 

i[n] = Ts.Σ e[n];                                         (3) 

The derivative term is computed as difference between current sample 

of error e[n], and the last sample e[n-1], Ts is the sampling time, and the 

integral term is computed as summation.  

To set Ts, it is necessary to bear in mind the time response of the sys-

tem. As a rule of thumb next relationship is used: 

Ts ≤ Tp/10,                                        (4) 

Were, Tp is the main time constant of the system (Wescott, 2000).   

To tune the response of the controller, it is needed to select the parame-

ters Kp, Ki and Kd in an appropriated way. There are several rules to do 

this job; the most popular is the Ziegler-Nichols method. 

In practice, several problems arise, mainly due to the electrical noise at 

the input. The error variable e[n] is computed as a difference between in-

put signal (and noise) and the set point. When the output of the system 

reaches the steady state, e[n] is near zero, but the relative error is high. In 

the case of the derivative variable computed as e[n] - e[n-1], the situation 

is worst and could lead unstable results; usually low pass filters are em-

ployed to mitigate the noise effects. 

In this work the noise reduction properties of the EWMA and statistical 

criteria are used to adjust the filter. See the proposed control loop in Fig, 1. 

 

 

 

 

 

 

 

 

Figure 1: EWMA-PID controller, PN[n], IN[n], DN[n] are filtered variables com-

puted from e[n], and will be used to calculate the control ec. (1) 
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2. DEVELOPMENT 

2.1. The Exponentially Weighted Moving Average  

The moving average technique is often used in order to obtain an aver-

age of samples at the time they are “arriving” to the control system. The 

idea is to add the last N samples acquired, and then divide the sum by N. 

The average is “moving” because it is computed each time a new sample is 

obtained. To save memory and to make faster calculations, the recursive 

formula is used. 

PN[n] = PN [n-1] + (e[n] – PN[n-1])/ N,                       (5) 

Called Exponentially Weighted Moving Average (EWMA), because the 

recent samples are more weighted than the oldest, and as it could be seen 

in Proakis y Manolakis, (1998), it behaves like a IIR (Infinite-duration Im-

pulse Response) low pass filter. Analytical expression of the response to a 

unitary step is:  

PN[n] = e[0].(1 - ((N-1)/N)
n+1

 ) 

In an approximated way, it is possible to describe the temporal step re-

sponse (Crenshaw, 1996) as 

 

PN[n] = e[0].(1 - e 
–n/N 

) 

 

The EWMA will reach the 1-1/e of his final value after N samples. N is 

called "averaging time constant" of the filter and it produces a delay τ: 

 τ = N. Ts,                                                (6) 

The EWMA is used because of its noise filtering capabilities.  In those 

cases where the noise is added to the signal and has zero mean value the 

filter cancels the effects of noise at the output (Smith, 1997). In this analy-

sis, the noise superimposed to the input signal e[n] is supposed Gaussian, 

zero mean value and variance σ2. 

The noise reduction of the EWMA is more effective than the average of 

N samples, the variance of the EWMA could be expressed as (Hunter, 

1986): 

σPN
2  

 = σ
2
/ 2 N-1,                                        (7) 



An optimal value of N, that reduces the noise of the EWMA, and at the 

same time, introduced a delay compatible with the normal operation of the 

system, should be found. 

2.2. Proposed Solution 

To determine the optimum averaging constant N of the filter during the 

system evolution, e[n] measurements are carried out at constant time Ts , 

called instantaneous measurement, also an EWMA PN[n] is calculated us-

ing Ec. (5); the standard deviation of  PN[n] is: 

σPN[n] = σ/ 1-2N ,                        (8) 

 

At the instant n, PN [n] will be considered the "current average" and the 

best available estimation of the input variable. To be valid. PN[n] should 

fulfil the following requirement:  

|PN[n] – e[n]| ≤ σ,                        (9) 

  

If this requirement is not fulfilled,  N[n+1] = N[n]/2 will be adopted. 

On the other hand, a simultaneous EWMA P2N[n] with averaging time 

constant 2.N is calculated, and if the previous requirement is satisfied, it 

could be possible to adopt a better filtered current average provided that 

the following requirement is fulfilled. 

|PN[n]  – P2N[n] | ≤ σ/ 1-2N ,                   (10) 

 

To adopt N[n+1] = 2.N[n] the average P2N[n] should fall inside the band 

of noise of the current average. With this procedure fast (and noisy) meas-

urements are achieved when the system is evolving faster. On the other 

hand, measurements very well filtered (and slow) are achieved when the 

system is inside the band of noise of the instantaneous measurements. 

Should be noted that, only the value of averaging constant N, is changed, 

not the actual value of PN[n]. 

 On the other hand, the standard deviation of the EWMA σPN, can be 

seen as the uncertainty of the estimation of the mean value of e[n]. 

 

 



2.3. Calculation of  EWMA-PID Controller variables 

2.3.1. Calculation of the proportional variable E[n] 

The current EWMA, PN[n],  is adopted as the better estimation of e[n]. 

E[n]= PN[n]                                            (11) 

2.3.2. Calculation of the derivative variable D[n] 

The instantaneous derivative term d[n], is calculated in the same way   

that standard PID by eq. (2). As e[n] and e[n-1] are independent measures 

of the error, the variance of d[n] can be expressed as: 

σd
2= 2 . σ2                                             (12) 

For the calculation of the EWMA of the differential variable D[n], two 

EWMA are computed, defined in the same way that in the Ec. (5); the first,  

defined over the odd samples of e[n]; the second, over even samples. 

Odd[n] = Odd[n-1] + [e[n] – Odd[n-1]]/ Nd,         for n odd         (13) 

Even[n] = Even[n-1] + [e[n] – Even[n-1]]/ Nd,       for n even        (14) 

Where Nd, is averaging time constant for derivative term D[n]. 

In this way, D[n] can be defined as: 

D[n] = Even[n] - Odd[n],                               (15) 

It is computed only when n is even. It is assumed equal to last calculated 

value for odd n. The standard deviation σD, of D[n] can be calculated, 

bearing in mind eq.(8) and that Even[n] and Odd[n] are EWMA with aver-

aging time constant Nd. 

σD = σ/ 1/2-Nd                                      (16) 

In a similar way that for the case of proportional variable PN[n], the 

double constant filter D2N[n-1] is calculated. The averaging time constant 

Nd, for derivative variable D[n], is adjusted for even n, using σd and σD in 

eq.(9) and (10). 

2.3.3. Calculation of the integral variable I[n] 

The integral variable i[d], for standard PID is calculated as the accumu-

lation of samples using eq. (3), when the system is far from the set point 



the summation saturate and produce an effect called wind up. For these 

reason, the EWMA integral variable I[n] is computed as: 

I[n] = Ni.PNi[n]                                                (17) 

Where Ni is averaging time constant for the integral variable; bearing in 

mind that the variance of I[n] is σI
2 = N σ2 and using the same criteria of 

eq. (9) and (10); can be seen that Ni will be adjusted at the same time that 

N,  then it is possible to use Ni = N. 

2.3.4. EWMA-PID Controller   

Using eqs. (11), (15) and (17), in eq. (1), it is possible to write the final 

form of the EWMA-PID Controller. 

y[n]= (Kp +N. Ki). PN [n] + Kd  DN [n],                          (18) 

The integral term of the EWMA-PID Controller, act as a reinforcement 

of the proportional term, to reach the set point, and is shortened when the 

system is far away from the steady state, this behaviour can be seen as an 

automatic gain control to increase the stability of the system; N could be 

used as an indicator of the state of the system. 

3. REALIZATION   

The EWMA-PID controller was implemented as position controller (di-

rection) and velocity controller (traction) in a robotic inspection vehicle 

(PMIR). Each motor, one for traction and other for direction, has its own 

AVR microcontroller, connected by wireless link to a Master device, send-

ing position (or velocity) to each motor. 

It is desired to implement a position and velocity control without over 

dumping. The conditions of the mobile platform such as the weight, fric-

tion and noise can change, when it happens, it is necessary to adjust the 

values of Kp, Ki and Kd to obtain an optimal response of standard PID. In 

Fig. 2 and 3 it is shown the response of standard PID and the EWMA-PID. 

The EWMA–PID controller show a fast response, and at the same time, 

more stable behavior with noise. 



 
Figure 2: Step response without noise. 

 a) Filled line, EWMA-PID controller with: Kp=7;Kd=45;Ki=0.5. 

b) Dashed line, standard PID with: Kp=1.3; Kd=20; Ki=.001. 

c) Stair case line, state of the averaging constant N. 

 
Figure 3: Step response with 1% of noise. 

 a) Filled line, EWMA-PID controller with: Kp=7;Kd=45;Ki=0.5. 

b) Dashed line, standard PID with: Kp=1.3; Kd=20; Ki=.001. 

c) Staircase line, state of the averaging constant N. 



4. DISCUSION  

The algorithm developed could be tailored in order to meet different 

control needs. The obvious parameters; N, Kp, Kd, Ki, and the band limits 

can be tuned up. 

The criteria used to change the filtering conditions could be modified 

too. As an example: “Wait for three consecutive times the value is out the 

band to change to a lesser filtered condition”. 

Another interesting alternative is to change the filtering conditions more 

than one step at the time. Furthermore, the criteria used do not need to be 

the same depending on if it is going to better or to worse filtering condi-

tions. Looking for a lesser measurement error or a faster controller reaction 

respectively. 

5. CONCLUSION   

A control method has been developed, using a EWMA input filter of 

PID, whose time response depends, upon the deviation of the system from 

the set point. The averaging time constant N, is revised each Ts. The in-

stantaneous measure e[n], is used as “guard” measurement with known 

noise and precision. This criterion allows reducing the levels of noise in 

the input signal, decreasing the permanent error and time response of the 

system. The same method, has been extended to the calculation of the dif-

ferential variable, with improvements in stability and to the integral vari-

able, avoiding the use of an anti windup strategy, with excellent results as 

far as simplicity in the implementation and robustness.  

REFERENCES 

Crenshaw, J. W..“All About Filters”, Embedded System Programming pp 12-20 

May (1996) 

Kuchen B., Carelli R.y .Gambier A.; Control Digital, pp.110-112, EBAI,  (1988) 

Proakis, J.G. y Manolakis, D.G. Tratamiento digital de señales, 3ª ed., pp. 92-118,  

Prentice Hall, Madrid, (1998)  

Smith, S.W., “The Scientist and Engineer's Guide to Digital Signal Processing”, 

Technical Publishing California (1997) 

Wescott,T. “PID Without a PhD”, Embedded System Progr. pp. 86-108. Oct 

(2000). 

Hunter, J.S. “Exponentially Wheighted Moving Average”, Journalof Quality 

Technolog”, Vol. 18 Nº 4, October (1986). 


