

XI Reunión de Trabajo en Procesamiento de la Información y Control, 21 al 23 de septiembre de 2005

Route planning for vehicle autonomous navigation, based on geometrical
regions.

Part I: Single approach point

L. M. Di Matteo1, A. C. Mangone2, M. L. Muzzio3, C. Verrastro4

 1 Artificial Intelligence Group, Univ. Tecnológica Nacional Fac. Regional Bs. As., Buenos Aires, Argentina.
Leandro.DiMatteo@ieee.org

2 Artificial Intelligence Group, Univ. Tecnológica Nacional Fac. Regional Bs. As., Buenos Aires, Argentina.
sigma1@ciudad.com.ar

3 Universidad Argentina de la Empresa, Facultad de Ingeniería, Buenos Aires, Argentina.
maximiliano@termoacustica.com.ar

4 Artificial Intelligence Group, Univ. Tecnológica Nacional Fac. Regional Bs. As., Buenos Aires, Argentina.
 Centro Atómico Ezeiza, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina.

cverra@cae.cnea.gov.ar

Abstract−− This paper presents an algorithm for
trajectory generation for vehicle autonomous
navigation.

This algorithm generates a trajectory from an
initial to a goal position, avoiding obstacles, where
the goal point moves all the time and also the
obstacles, and where the processing time must be as
short as possible.

This method gives the possibility to find the
optimum path, selecting a determined trajectory
from many possible ones.
 We model the environment using geometrical
regions and it is not grid based, that is why we use
algebraic expressions to calculate obstacle free paths.
It is assumed that obstacle positions are known all
the time.

Keywords−− Robotics, autonomous navigation,
path planning, optimum routing, mobile vehicle
navigation.

I. INTRODUCTION

Control problems involving the autonomous
navigation of mobile vehicles have attracted much
attention in the last decade.

Algorithmic methods based on potential fields have
demonstrated to be the most effective ones (Kathib at
al., 1998; Borenstein and Koren, 1991b). These
techniques are very stable against sensing errors and
easy to implement, but these have some difficulties
when obstacles are very near and the obstacle free paths
are very thin.

There are several control techniques based on
artificial intelligence (Patino and Carelli, 2003) that
have to lead with structured or dynamic environments.
In structured environments the motion can be planned in
advance but in dynamical environments actions must be
recalculated in real time.

Others works model the environment on a grid based

map (Pereiro and Verrastro, 2003; Weigl at al, 1993)
where each cell is occupied by an obstacle or not. This
model is very useful to process search algorithms in
optimum path searching.

In recent application jobs, we had to lead with the
trajectory calculation problem, in a high speed
dynamical environment where the goal position moves
all the time and also the obstacles.

In this work we propose a simple algorithm that
generates a trajectory from an initial to a goal position,
avoiding obstacles, where the goal point moves all the
time and also the obstacles, and where the processing
time must be as short as possible.
 We model the environment using geometrical
regions and it isn’t grid based, that is why we use
algebraic expressions to calculate obstacle free paths. It
is assumed that obstacle positions are known all the
time.

II. OBJECTIVES

 The main task of this algorithm is to determine a
trajectory to achieve a defined point, avoiding obstacles
and arriving to that point with a specified entry angle.
 Current and target position must be given, as well as
the environment knowledge.
 In order to arrive to the target point with the
specified entry angle, we use an approximation radius
that establish an approaching point.
 In conclusion, we need the following input
parameters for the system: initial position, final
position, xy obstacle points, entry angle and
approximation radius.

XI Reunión de Trabajo en Procesamiento de la Información y Control, 21 al 23 de septiembre de 2005
III. ENVIRONMENT MODELLING

This work propose to work with an environment
without a cell oriented structure. So, we use algebraic
expressions to model objects and trajectories.

We assume a two dimensional world, and where
each obstacle is a square with a known side length.

In case those obstacles are irregular, not squares, the
environment must be preprocessed to put it in the
squared form.

Figure 1.

Figure 2.

Once we have a modularized workplace, for each

obstacle block the mass center must be calculated, that
is to say, the center of the square in a squared obstacle.

Each obstacle block is represented with a
circumference, Eq. 1, where the center is the calculated
mass center of the object, and its radius is predefined by
the user, Fig. 1 and Fig. 2.

() () 222 RrobotYcYXcX =−+− (1)

It is intended to configure the obstacles radius a little

greater than obstacle diagonal, with the aim of taking
into account the mobile robot dimensions, in order to
avoid lateral collision between the robot and obstacles.

IV. GENERAL DESCRIPTION

The best way to understand this algorithm, before
going to a deep explanation, is using an example,
describing a simple and typical situation.

The environment to test is shown in Fig. 3, in which
it is possible to see the initial robot position, on the
bottom left corner, the target position on the upper right
corner, and two squared obstacles in the middle.

Figure 3.

First at all, approximation point is calculated, Fig. 4.
We use that point as a way point previous to reach

the final point with the aim of helping the robot to arrive
to the target point with the specified angle.

Figure 4.

After that, the route planning begins. The first step
is to try going to the approach point directly, Fig. 5, if it
is possible it is done, otherwise, like in the figure, two
alternatives way points are calculated, one on the robot
right hand and the other one on the left hand.

Figure 5.

X

a

X

X

90º

X

a

XI Reunión de Trabajo en Procesamiento de la Información y Control, 21 al 23 de septiembre de 2005
If the route planner decides to take the point on the

robot right hand, Fig. 6, the obstacle free path is
checked again, but in this case between the robot and
this alternative way point. Like this path is obstacle free,
this alternative way point is taken as initial point and the
process starts again until the robot reaches its objective
point.

Figure 6.

Lets analyze what was happened if the route planner

had decided to take the robot left hand point, see Fig. 4
and then Fig. 7.

Figure 7.

In that case, when trying to check obstacle free path,

a new obstacle is found. Here this waypoint is not
taking into account, and two new alternative way points
are calculated, in this case these are calculated against
the new obstacle. Now suppose route planner selects the
way point on the robot left hand, later the obstacle free
path is checked. As shown, this path is free, so that way
point is taken into account, and is set like initial point
for starting the search process again. The process
continues to reach the final point, Fig. 8.

Before to tell robot to do a movement, the route
planner generates two trajectories, one using valid way
points taken from the robot left hand and other one
using valid way points taken from the robot right hand.
After that, trajectory length are calculated, and it is
selected the shorter one.

Note that it is possible to generate a binary tree to
select the shortest trajectory, but it is not done in this
work.

Figure 8.

After route planner decides what trajectory is the

best the algorithm returns the first way point of the
selected trajectory. Then the robot moves to that xy
point.

It is very important to note that the algorithm always
return the first way point of the selected path and in
each differential time the trajectories are recalculated. It
permits to work in a dynamical environment where
obstacles are in movement. The current and target point
can be in movement, too.

Therefore, this route planner algorithm can be used
in static environments as well as dynamical ones.

V. APPROACH POINT CALCULATION

We use the approaching point as a waypoint
previous to reach the final point with the aim of helping
the robot to arrive to the target point with the specified
angle, Fig. 4.
 The entry angle is given as a parameter, also an
approximation radius, it is used to calculate the
approaching point. This radius indicates the distance
between the goal point and the approach point.
 Being (Xb, Yb) the target point, Rapp the
approaching radius, alfa the entry angle. In order to find
this point, it is necessary to solve the following equation
system:

() () 222 RappYbYXbX =−+− (2)

bXmY += * (3)

where:

)(alfaarctgm = (4)

YbXbmb +−= * (5)

That is, the intersection between the approximation
circumference and the straight line equation which
intersects the target point and the approaching point.

X

X

X

a

X

X

X

a

X

X

90º

X

a

X

XI Reunión de Trabajo en Procesamiento de la Información y Control, 21 al 23 de septiembre de 2005
Now the equation system returns a pair of points,

(Xapp1, Yapp1) and (Xapp2, Yapp2), and it is
necessary to discriminate which of them is the valid
one. In order to determinate the point of interest (Xappr,
Yappr) we use this code:

//
Angle = GetAngle(Xapp1,Yapp1, Xb, Yb);
if(alfa == Angle)

{
Xappr = Xapp1; Yappr = Yapp1;
}

else
{
Xappr = Xapp2; Yappr = Yapp2;
}

//

VI. WAYPOINTS SEARCH
First of all, it is necessary to determine if an obstacle

is present between the robot and the target point,
Fig. 5. A circumference models the obstacle, and the
desired trajectory is denoted by a line equation that
intersects the robot position and the target point. If the
obstacle is located in the middle of the trajectory, the
following equation system must have solution in the real
domain:

() () 222 RrobotYbYXbX =−+− (6)

bXmY += * (7)

Where,

XrXb
YrYb

m
−
−

= (8)

YrXrmb +−= * (9)

Being Xr,Yr the robot position and Rrobot the modeled
robot radius. .

 If no obstacle is found, the waypoint is the target
point.
 If the path isn’t free of obstacle, two alternative way
points are calculated.

The process to calculate these points is as follows.
By one hand, we have the straight line that intersects the
robot and obstacle positions, Eq. 10, and therefore we
can obtain its normal line, Eq. 11.









−








−
−

+
−
−

= YrXr
XoXr
YoYr

X
XrXo
YrYo

Y **

(10)









−








−
−

+
−
−

= ⊥⊥ YoXo
YrYo
XrXo

X
YoYr
XoXr

Y **

(11)

 By the other hand, we have a circumference centered
in the obstacle and with a pre assigned radius Rway.
Note that Rway must be greater than robot radius
Rrobot.
 The two way points are obtained from the
intersection between the way point circumference and
the normal line mentioned above, Eq. 12 and Eq.13.

() () 222 RwayYoYXoX =−+−
(12)









−








−
−

+
−
−

= YrXr
XoXr
YoYr

X
XrXo
YrYo

Y **

(13)

 Until here, we have the two way points (Xw1,Yw1)
and (Xw2, Yw2).
 Now is interesting to know which one is located on
the robot right hand and which one is located on the
robot left hand. This is important for the route planner,
it gives the possibility to create a binary tree to make a
list of all possible obstacle-free trajectories.
 To determine that, case presented in Fig. 8 is
analyzed. Then the following programming code must
be applied:

//
if((GetAngle(Xr, Yr, Xw1, Yw1)
 – GetAngle(Xr, Yr, Xo, Yo)) > 0)
{
Xder = Xw2; Yder = Yw2; Xizq = Xw1 ; Yizq = Yw1;
}
else
{
Xder = Xw1; Yder = Yw1; Xizq = Xw2 ; Yizq = Yw2;
}
//

Being (Xder, Yder) the point located on the robot right
hand and (Xizq, Yizq) the point located on the robot left
hand.

XI Reunión de Trabajo en Procesamiento de la Información y Control, 21 al 23 de septiembre de 2005

Figure 8.

VII. ROUTE PLANNER
 This is the main algorithm. It gives the shortest
trajectory without obstacles, searching waypoint by
waypoint.
 The Fig. 9 illustrate the main body of the algorithm.
It is made a list for all way points that conforms a
trajectory free of obstacles from the current robot
position to the target point.
 In our case that sequence is executed twice, the first
pass uses all way points located on the robot right hand,
and in the second pass the way points located on the
robot left hand are taken.
 This routine returns two trajectories, that is, two way
point lists. The first trajectory denotes the obstacle free
path taking all way points placed on the robot right hand
and the second one takes all way points placed on the
robot left hand.
 Here it is possible to construct a binary tree and find
the optimum trajectory using searching algorithms. But
in our work, we look for the shortest trajectory between
the two lists mentioned above, it gives a better
processing speed, an important key in real time systems,
although it is possible that the selected path not be the
shortest one. Only are considered 2 from 2T possible
trajectories, where T is the number of found obstacles.

VIII. EXPERIMENTAL RESULTS

 To test our work we use a robot soccer simulation
platform, more precisely, the simulator v1.4 used by
FIRA organization in its tournaments.
 A short code in C++ language was written down to
test the algorithm, all data was logged to a text file.
Some results are shown in Fig. 10, 11, 12 and 13.
 The dark gray box represents the mobile robot, the
light gray boxes are the obstacles, in this case these
were other players, and the goal point is the ball. In all
cases the desired entry angle is 45 degrees.

 Figure 9.

xy Robot position
xy Target point

radio
entry angle

Specify aproximation point

Model obstacles

Obstacle?

Generate circumsference

Obtain the two waypoints

Obstacle between
waypoint and Robot

position?

Go to the waypoint

Obstacle between
waypoint and

aproximation point?

Select correct waypoint

Go to the aproximation point

Rotate on its own edge in
the entry angle direction

Go to the target point

End

Start

 no

 no

yes no

yes

yes

x

x
a+

a-

b1
b2 a

. .
x1y1

x2y2

a+=b1- a
a- =b2- a

XI Reunión de Trabajo en Procesamiento de la Información y Control, 21 al 23 de septiembre de 2005

 Figure 10.

Figure 11.

 Figure 12.

Figure 13.

IX. CONCLUSIONS
 As seen in the experimental results, the algorithm
proposed achieves its objective successfully, the
simulation demonstrated that it fits to static and
dynamic environments.
 The selection of a “good” path from only two
trajectories seems to be very plausible for systems that
required a high speed response.

 Spite of using the approach point, that helps the
mobile vehicle to arrive to the target point with the
specified entry angle, some deviations were observed,
due to the inertial factor of the mobile vehicles.
 Therefore, this paper addresses the problem of
trajectories planning in static or dynamic environments
when the mobile vehicle has a low inertial behavior,
where the inertial factor can be ignored.
 That is a reason to continue working in a more
advanced algorithm, also efficient for vehicles with a
high inertial factor, as ships, airplanes or terrestrial
heavy mobile vehicles with high speed movements.

REFERENCES

Alberino S., Folino P. and Verrastro C. “Variante en el
algoritmo PID para evitar el uso de un generador
de trayectoria trapezoidal ” X RPIC Proceedings,
San Nicolás, Bs. As., 659-663 (2003).

Borenstein J. and Y. Koren, “The Vector Field
Histogram Fast Obstacle Avoidance For Mobile
Robots,” IEEE Journal of Robotics and
Automation, 7, No 3, 278-288 (1991a).

Borenstein J. and Y. Koren, “Potential Field Methods
and Their Inherent Limitations for Mobile Robot
Navigation,” Proceedings of the IEEE-ICRA,
Sacramento, California, 1398-1404 (1991b).

Hwang, Y.K. and N. Ahuja. “Gross Motion Planning –
A Survey”, ACM Computing Surveys, 24(3), 219-
291, (1992).

Khatib, O. “Real-time obstacle avoidance for
manipulators and mobile robots” Proceedings
IEEE-ICRA, St. Louis MO, 500-505 (1985).

Latombe, J. C. “Robot Motion Planning”, Kluwer
Academic Pub. Boston (1991).

Orqueda O. and Agamennoni O. “Motion Planning and
control of Autonomous robots – I: Generalized
Potential Field Functions” X RPIC Proceedings,
San Nicolás, Bs. As., 541-546 (2003).

Patiño D. and Carelli R. “Adaptive Critic Design-Based
Optimal Control For Mobile Robots Navigation”,
X RPIC Proceedings, San Nicolás, Bs. As., 503-
507 (2003).

Pereiro F. and Verrastro C. “Sistema de Comando y
Navegación para Robot Móvil con Arquitectura
Distriuida” X RPIC Proceedings, San Nicolás, Bs.
As., 565-569 (2003).

Weigl M., Siemiatkowska B., Siroski K., Borowski A.:
“Grid-Based mapping for autonomous mobile
robot”, Robotic and Autonomous Systems,
Amsterdam, Holland, (1993).

x

x

x

x

x

x x
x

x xx

x

x
x

x

