
Open-source Multi-UAV Simulator for the
ROS Environment

Ignacio Mas∗†

Sebastián Curi∗

Ricardo Sánchez Peña∗†

∗Centro de Sistemas y Control
Instituto Tecnológico de Buenos Aires (ITBA)

†Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET)
Email: iamas@itba.edu.ar

Abstract—This article presents an open-source simula-
tor for multiple Ar.Drone quadrotors that runs under the
ROS operating system. The simulator includes dynamic
models of the commercially available Parrot Ar.Drone
vehicles, and models of their onboard sensors with the
addition of a simulated GPS receiver. The system was
verified by the implementation of a 3-UAV formation
control architecture and results for a step response and
a trajectory following test are shown. The interface of
the simulator with the ROS environment is similar to
that of the open-source driver typically used to connect
through ROS with the real vehicles. This feature allows
for a seamless transition between simulation, hardware-
in-the-loop testing and full hardware experimentation.

I. INTRODUCTION

Advances in different fields of technology opened
a wide range of possibilities in the utilization of
unmanned aerial vehicles (UAVs) for activities such
as remote monitoring, border patrol and surveillance,
disaster relief, forest fire detection or archeology.

In general, these applications are preformed by a
single vehicle that carries the onboard instruments
necessary to execute the mission.

In recent years, there is a growing interest in replac-
ing a single complex vehicle with a platoon of smaller,
simpler and cheaper UAVs that together can achieve
the same goals or even extend the overall capabilities
when operating in a cooperative fashion.

In this article, we present an open-source simulator
for multiple commercially-available Parrot Ar.Drone
quadrotors. The simulator runs under the ROS oper-
ating system. The simulator includes dynamic models
of the Ar.Drone vehicles and models of their onboard
sensors, together with a simulated GPS receiver. The
system is verified by controlling a platoon of three
Ar.Drone quadrotors.

II. BACKGROUND

The context of this work is the development of an
autonomous aerial platform that can support research
activities, as well as the demonstrations of applications
and proof-of-concepts that can be of interest to the
industry in areas ranging from agriculture and oil and

gas exploration to remote sensing or motion picture
film-making.

In particular, the overall objective of this work is
the creation of an integral multi-UAV testbed, con-
sisting of a simulation environment and a hardware
system, that can provide a simple and fast development
platform to study guidance, navigation and control of
platoon of autonomous aerial vehicles, with emphasis
on the formation control methods, the coordinated
navigation and the early demonstration of potential
applications.

Many institutions around the world have created
their own testbeds to support multi-UAV research.
Among them we can cite those that use quadrotors in
indoor environments , such as the University of Penn-
sylvania [1] or MIT [2], or outdoors using helicopters,
like the one developed by UC Berkeley [3]. Brigham
Young University and Stanford University use fixed-
wind UAVs [4], [5]. The testbed platform developed
by ETH de Zurich allows for acrobatic flights in a
protected enclosed environment [6].

In parallel with these developments, in the last few
years a new software paradigm for robot applications
has emerged, taking a strong position in the academic
world: the ROS environment. ROS (Robot Operating
System) is an open-source meta-operating system for
robots that provides a communication layer and a
data and programming structure that simplifies the
development, the collaboration and the exchange of
research tools and algorithms [7]. This system is being
widely adopted by the scientific community, which
allows for an unprecedented direct access to state-of-
the-art developments in the robotics field.

This project makes use of the ROS operating sys-
tem to integrate in a simple way different vehicles,
personal computers and programming languages –such
as C, MATLAB and Python–, and reuse community-
developed robot drivers and tools. Additionally, the
seamless integration of ROS and the Gazebo Simu-
lation environment allows for high fidelity simulation
and hardware-in-the-loop testing.



Fig. 1. Front-end of the developed multi Ar.Drone quadrotor simulator with front-camera capability for position estimation. The bottom
windows show the on-board video image generated by each quadrotor.

III. MULTI-UAV SIMULATION ENVIRONMENT

A high-fidelity Ar.Drone quad-rotor simulator with
multi-vehicle capability was developed based on the
open source single-quadrotor ROS package created
under the Gazebo simulation environment by the Com-
puter Vision Group at the Technical University of
Munich (TUM). The original package was extended to
add a functionality that was not previously available.

The simulator includes plugins that describe the
different sensors onboard the commercially-available
quadrotor: an inertial navigation system with 3-axes
accelerometers and 3-axes gyroscopes, a front-view
wide-angle camera and a low resolution bottom-view
camera [8]. Additionally, a GPS receiver was simulated
for each vehicle to provide a capability that is not
part of the commercial system, but that we are in the
process of integrating to our quadrotors to have ab-
solute position measurements. The interface between
the Gazebo simulation and the ROS environment is
similar to that provided by the Ar.Drone ROS driver
called ardrone_autonomy, which is based on the
official AR-Drone SDK version 2.0 and supports both
AR-Drone 1.0 and 2.0. This is the driver we currently
use in the lab to operate the Ar.Drone quadrotors.
This feature allows for a seamless transition between
simulation and hardware experimentation. The driver
ardrone_autonomy was developed in the Auton-
omy Lab of Simon Fraser University, and is a fork of
AR-Drone Brown driver created by Brown University.
These characteristics result in high fidelity INS/GPS

and camera sensor data as well as a realistic dy-
namic model of the group of Ar.Drone quadrotors, and
a straightforward implementation of hardware-in-the-
loop analysis for a quick and smooth transition into
full hardware demonstrations.

Figure 1 shows the front-end of the upgraded simu-
lator that allows for multiple quadrotors to fly simulta-
neously and interact with each other. Every quadrotor
has a simulated inertial measurement unit (IMU) with
specifications similar to those of the commercial units
and a simulated GPS receiver with user-defined error
specifications. The individual quadrotors use those
sensors for the estimation of navigation parameters,
implementing sensor-fusion techniques developed in
[9]. In particular, gyroscopes provide angular veloc-
ity and by integration the attitude is estimated. As
errors accumulate during integration, gyroscopes by
themselves are not enough for absolute orientation
measurement. Accelerometers complement this data
by comparing the earth gravitational field with the
quadrotor reference frame and thus giving an absolute
roll and pitch measurement. The fusion algorithm is
given by a Madgwick complementary filter [10] which
uses the high-bandwidth of the gyroscope together
with the low-bandwidth of the accelerometer to es-
timate orientation.

Position estimation of the quadrotor is achieved by
fusing dead-reckoning with GPS measurements from
a low-cost receiver. Due to the non-linear dynamics,
an Extended Kalman Filter [11] is used to fuse these



two measurements.
The quadrotor 3-D models were modified with the

addition of a colored marker (magenta hat) that can
be used by the vehicles to visually localize each other
in the formation in order to develop vision-based
integrated navigation methods of UAV platoons [12].

IV. FORMATION DEFINITION

In order to verify the functionality of the simulator,
a multirobot formation is defined for a group of 3
aerial robots, each with 4 degrees of freedom (DOF),
specifically, (x, y, z, θ). This is applicable to robots
such as stabilized quadrotors (UAVs).

The formation is defined following the Cluster
Space Control framework [13]. This strategy concep-
tualizes the n-robot system as a single entity, a cluster,
and desired motions are specified as a function of
cluster attributes, such as position, orientation, and
shape. These attributes guide the selection of a set of
independent system state variables suitable for speci-
fication, control, and monitoring. These state variables
form the system’s cluster space. In this particular case,
the cluster is defined with the following specifications:

• The position of the cluster (xc, yc, zc) is de-
fined by a frame located at the centroid of
the formation and its orientation is given by
the (rollc, pitchc, yawc) angles –following the
Z − Y − X Euler angles convention– as shown
in Figures 2 and 3.

• The shape of the formation is defined by 3
variables that specify a triangle using 2 sides and
one angle. In particular, p specifies the distance
between robot 1 and robot 2, q specifies the
distance between robot 1 and robot 3, and β is
the angle formed by robots 2-1-3.

• The orientation of the robots with respect to the
orientation of the cluster is given by the variables
φi, where i = 1, 2, 3.

Fig. 2. Cluster parameters definition. Overhead view.

Given this definition, a set of forward and inverse
kinematic equations can be written to relate the robot

Fig. 3. Cluster parameters definition showing rollc and pitchc
variables.

space variables

r = (x1, y1, z1, θ1, x2, y2, z2, θ2, x3, y3, z3, θ3)
T , (1)

with the cluster space variables

c = (xc, yc, zc, rollc, pitchc, yawc, φ1, φ2, φ3, p, q, β)
T ,

(2)
such that ci = fi(r) and ri = gi(c). Furthermore,
velocity kinematics can be derived to obtain the cluster
jacobian matrix that relates velocities in both spaces,
such that ċ = J(r)ṙ.

V. UAV FORMATION CONTROLLER

Figure 4 shows the architecture of the formation
controller implementation. The controller operates in
the space of the formation –cluster space–, which
allows for an intuitive specification of the formation
trajectories. Control commands are computed in clus-
ter space where trajectories for each of the formation
variables can be followed. The inverse jacobian matrix
converts the resulting cluster space velocity commands
to robot space velocity commands that are then applied
to the vehicles in the system. Robot sensor information
is converted into cluster space through the jacobian and
forward kinematic relationships.



Fig. 4. Cluster space controller block diagram . Solid lines indicate
signals and dotted lines indicate parameter passing.

TABLE I
STANDARD DEVIATION OF THE FORMATION PARAMETERS FOR

TEST 1 AFTER STEADY STATE IS REACHED.

Formation parameters’ std errors
xc (m) 0.11
yc (m) 0.22
zc (m) 0.13

rollc (rad) 0.004
pitchc (rad) 0.0025
yawc (rad) 0.044
p (m) 0. 032
q (m) 0.035
β (rad) 0.012

VI. RESULTS

The performance of the system is evaluated imple-
menting a proportional controller with the architecture
presented in Section V. For these test cases, the
accelerometers std errors are set to 0.35 g and the
gyroscopes std errors are set to 0.01 ◦/s. The GPS
receiver is simulated as Gaussian with zero mean
and standard deviation of 2.0 m (std.). The onboard
cameras were not used during these tests.

The controller, as well as the formation kinematic
transformations, were implemented in Python for na-
tive execution in the ROS environment.

Two test cases are presented. In the first one, three
quadrotors start on the ground and take off at time t =
20 s. The cluster controller then regulates the formation
to reach a desired final position given by the cluster
parameters

cdes = (5,−5, 15, 0, 0, π/2, 0, 0, 0, 4, 4, π/4)T . (3)

The errors of the different cluster parameters are
shown in Figure 5. It can be noted the slow dynamics
of the quadrotors altitude as they climb from 0 m to
15 m. The standard deviations of the formation param-
eters’ error signals once the steady state is reached are
shown in Table I.

For the second test case, the formation follows a
cluster space trajectory. The input to the controller is

0 20 40 60 80 100 120

−5

0

5

10

15

Time (s)

F
or

m
at

io
n 

pa
ra

m
et

er
 e

rr
or

s 

 

 
xe (m)

ye (m)

ze (m)

rolle (rad)

pitche (rad)

yawe (rad)

pe (m)

qe (m)

betae (rad)

Fig. 5. Formation parameters errors starting on the ground and
taking off at t = 20 s.

a reference trajectory for each formation parameter:

xc cmd(t) = 5 cos (2πft)

yc cmd(t) = −5(1 +
1

2
sin (4πft))

zc cmd(t) = 15 +
5

2
(1− cos (3πft))

yawc cmd(t) = 0.1t

pc cmd(t) = 4

qc cmd(t) = 4

βc cmd(t) = π/4

(4)

where f = 0.01Hz is the trajectory frequency. The
remaining variables are regulated at a constant zero
value.

The results are shown in Figure 6 for the formation
position, in Figure 7 for the formation orientation, and
in Figure 8 for the formation shape parameters.

It can be seen that the formation parameters follow
closely the desired trajectories. The uncertainty in the
robots’ yaw estimation by the sensor fusion algorithm
–due to the lack of an absolute measurement of this
magnitude– affects the xc and yc variables, specially
at low velocities as can be seen in Figure 6 as well as
the shape of the formation as seen in Figure 8.

Next steps include further verification of the soft-
ware and setting up a hardware experimental system to
contrast the simulator results with Ar.Drone hardware
experimental tests.

VII. CONCLUSION

This article presented an open-source simulator for
multiple Ar.Drone quadrotors that runs under the ROS
operating system. The simulator includes dynamic
models of the commercially available vehicles and
models of their onboard sensors, together with a
simulated GPS receiver. The system functionality was
demonstrated by the implementation of a formation
control architecture, and results for a step response
and a trajectory following test were shown.



Fig. 6. Trajectory following results showing the desired and
measured values of the xc, yc, zc formation variables.

The interface of the simulator with the ROS envi-
ronment is similar to that of the open-source driver
typically used to connect through ROS with the real
vehicles. This feature allows for a seamless transition
between simulation, hardware-in-the-loop testing, and
full hardware experimentation.

This work is a contribution to the overall objective
of creating an integral multi-UAV testbed, consisting
of a simulation environment and a hardware system,
that can provide a simple and fast development plat-
form to study guidance, navigation and control of
platoons of autonomous aerial vehicles, with emphasis
on formation control methods, coordinated navigation
and the early demonstration of potential applications.

ACKNOWLEDGMENT

This work has been sponsored through a variety of
funding sources to include USAIT Grant W911NF-14-
1-0008, and the grants “Iniciación a la Investigación
y el Desarrollo Tecnológico”, and ITBACyT 2013-
17, Instituto Tecnologico de Buenos Aires (ITBA),
Argentina.

REFERENCES

[1] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay
Kumar, “The grasp multiple micro-uav testbed,” Robotics &
Automation Magazine, IEEE, vol. 17, no. 3, pp. 56–65, 2010.

Fig. 7. Trajectory following results showing the desired and
measured values of the rollc, pitchc, yawc formation variables.

[2] Mario Valenti, Brett Bethke, Gaston Fiore, Jonathan P How,
and Eric Feron, “Indoor multi-vehicle flight testbed for fault
detection, isolation, and recovery,” in Proceedings of the AIAA
Guidance, Navigation, and Control Conference and Exhibit,
Keystone, CO, 2006, vol. 63, p. 64.

[3] H Jin Kim and David H Shim, “A flight control system for
aerial robots: algorithms and experiments,” Control Engineer-
ing Practice, vol. 11, no. 12, pp. 1389–1400, 2003.

[4] Timothy W McLain and Randal W Beard, “Unmanned
air vehicle testbed for cooperative control experiments,” in
American Control Conference, 2004. Proceedings of the 2004.
IEEE, 2004, vol. 6, pp. 5327–5331.

[5] Rodney Teo, Jung Soon Jang, and Claire J Tomlin, “Automated
multiple uav flight-the stanford dragonfly uav program,” in
Decision and Control, 2004. CDC. 43rd IEEE Conference on.
IEEE, 2004, vol. 4, pp. 4268–4273.

[6] Sergei Lupashin, Angela Schöllig, Michael Sherback, and
Raffaello D’Andrea, “A simple learning strategy for high-
speed quadrocopter multi-flips,” in Robotics and Automation
(ICRA), 2010 IEEE International Conference on. IEEE, 2010,
pp. 1642–1648.

[7] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully
Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y Ng, “ROS:
an open-source Robot Operating System,” in ICRA Workshop
on Open Source Software, 2009, vol. 3.

[8] Pierre-Jean Bristeau, François Callou, David Vissière, Nicolas
Petit, et al., “The navigation and control technology inside
the ar. drone micro uav,” in 18th IFAC World Congress, 2011,
vol. 18, pp. 1477–1484.

[9] S. Curi, I. Mas, and R. Sanchez Peña, “Autonomous flight of
a commercial quadrotor,” Latin America Transactions, IEEE,
vol. 12, no. 5, pp. 853–858, Aug 2014.

[10] S Madgwick, “An efficient orientation filter for inertial and
inertial/magnetic sensor arrays,” Report x-io and University of
Bristol (UK), 2010.



Fig. 8. Trajectory following results showing the desired and
measured values of the pc, qc, βc formation variables.

[11] Greg Welch and Gary Bishop, “An introduction to the kalman
filter,” 1995.

[12] J. Giribet, I. Mas, and R. Sanchez Peña, “Navegación integrada
con visión de múltiples UAV,” Congreso Argentino de
Tecnologı́a Espacial, May 2013.

[13] C. A. Kitts and I. Mas, “Cluster space specification and control
of mobile multirobot systems,” Mechatronics, IEEE/ASME
Transactions on, vol. 14, no. 2, pp. 207–218, April 2009.


	Introduction
	background
	Multi-UAV Simulation Environment
	Formation definition
	UAV Formation Controller
	Results
	Conclusion
	References

