EXAMEN FINAL ANÁLISIS MATEMÁTICO I - 15/02/2023

NOMBRE Y APELLIDO: REVISÓ:

1	2	3	4	5	NOTA

Todas sus respuestas deben ser justificadas adecuadamente para ser tenidas en cuenta. Condición mínima de aprobación (6 puntos): 50% del examen correctamente resuelto.

EJERCICIO 1:

(a) Determinar si la siguiente proposición es verdadera (V) o falsa (F). Justificar adecuadamente sus respuestas.

"Si $f: \mathbb{R} \to \mathbb{R}$ es una función derivable que tiene un punto crítico en $x = x_0$, entonces $g(x) = e^{f(x)}$ también tiene un punto crítico en $x = x_0$ ".

(b) Determinar, si existe, el valor real de k para que la función $f:[-3,+\infty)\to\mathbb{R}$ definida por

 $f(x) = \begin{cases} \frac{x-k}{\sqrt{x+3} - 3} & \text{si } x \neq 6 \\ 0 & \text{si } x = 6 \end{cases}$

presente una discontinuidad evitable en x=6. JUSTIFICAR sus afirmaciones y, en caso de existir, ¿cuánto debería valer f en 6 para que sea continua en todo su dominio?

EJERCICIO 2: Determinar todos los valores reales de α para los cuales

$$\sum_{n=1}^{\infty} \frac{1+3^{n-1}}{\alpha^n} = \frac{3}{4}$$

EJERCICIO 3: Determinar una función continua f que satisfaga la siguiente identidad en todo su dominio:

$$f(x) - 2 = \frac{1}{x} \int_{1}^{x} f(t) dt$$

EJERCICIO 4:

- (a) Sea $f(x) = \begin{cases} \frac{2x^2}{\sqrt{x^3 + 8}} & \text{si } -2 < x < 0 \\ \frac{x}{(1+x)^3} & \text{si } x \ge 0 \end{cases}$. Calcular el valor de la $\int_{-1}^{+\infty} f(x) \, \mathrm{d}x$.
- (b) Sea $g(x) = 1 3x + \sqrt{f(x)}$. Sabiendo que el polinomio de Taylor de orden 2 en $x_0 = 0$ de g es $p(x) = 2 x + 3x^2$, determinar la ecuación de la recta tangente a la gráfica de f en $x_0 = 0$.

EJERCICIO 5: El rectángulo ABCD está inscripto en la circunferencia de ecuación $x^2 + y^2 = 1$. Calcular el área del rectángulo sabiendo que es la mayor posible.